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Abstrad-The analysis of structures with "unilateral contact" boundary conditions is considered. The
stress-strain relations are nonlinear and they are derived from a non quadratic strain energy density by
"subdilferentiation". It is proved that for the inequality ,<onstrained boundary value problem the "principles"
of virtual and of complementary virtual work hold in an inequality form constituting a variational inequality.
The theorems of minimum potential and complementary energy are proved to be valid to account for this type
of boundary conditions. These theorems are used to formulate' the analysis as a nonlinear programming
problem. A numerical example of a structure having the "unilateral contact" boundary condition illustrates
the theory.

INTRODUCTION
In the analysis of structures, sometimes one encounters situations, where the boundary presents
a unilateral contact with a support. By the term "unilateral contact" it i~ meant that it is not
known a priori which part of the boundary works itself loose from the support and which part
remains in contact with it. Such boundary conditions resulting from the unilateral contact of a
linearly elastic body with a rigid support have been already considered by Signorini and
Fichera[2], who developed the abstract mathematical theory of the resprective boundary value
problem (B.V.P.).

A more general form of unilateral contact boundary conditions is considered in this paper.
They arise, when a body is in unilateral contact with an inelastic support. Moreover the strain
energy density of the considered body is assumed to be a convex (generally non quadratic)
function of the strain tensor components. This type of strain energy density, already considered
by the French school[5, 7] gives rise to a subdifferential constitutive relation and permits us to
formulate compactly a large class of nonlinear. constitutive laws.

Two variational inequalities generalizing the "principle of virtual work" and of "complemen­
tary virtual work" will be obtained and the corresponding minimum potential and complementary
energy theorems will be proved. It is shown, that using these theorems, the analysis reduces to a
nonlinear programming problem, and accordingly the nonlinear programming algorithms are used
for the numerical calculation.

The considered type of boundary condition appears in all the foundation structures. For
example it is known that often large footings, mats, retaining walls, pile foundations etc. work
themselves partly loose from the soil. Accordingly their stress and displacement fields can be
satisfactorilY obtained by means of the developed theory.

2. THE BOUNDARY VALUE PROBLEM

Consider in the ortDogonal cartesian system OXtX2X3 body n with boundary r. The total
boundary is made up of three nonoverlapping parts denoted r u, rp, r s. On r u (resp. rF) the
displacements (resp. the surface forces) have the given values Vi (resp. R) and on part r s the
unilateral contact boundary conditions hold.

If nl is the normal outward vector on the boundary and (Tlj is the stress tensor, then SI = (Tljnj

(i, j ::: J, 2, 3)-summation convention-is the resultant of the boundary stresses. To define the
boundary condition on r5, this resultant is decomposed into a factor SNI normal to:the boundary
and a vector Sn tangential to the boundary. The algebraic values of these vectors are denoted by
SN and ST. Further the algebraic value of SNI is considered to be positive if SN! is directed
outwards of the boundary. Similarly the vector U/ of the boundary r s is decomposed into a
normal vector UN! and a tangential vector UT, with algebraic values UN and UT respectively. The

tThe author would like to extend his grateful thanks to the Alexander von Humboldt Stiftung for their financial support
and to Prof. G. Fichera for drawing his attention to some relevant literature.
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unilateral contact boundary condition with respect to an inelastic support are given in Fig. l(a)
and have the following form[9]:

If "N<O, then SN= 0,

if UN~O, then SN +k(UN) =0.

(1)

(2)

Condition (1) expresses the fact, that when the body works itself loose from the support, then SN
is equal to zero. Condition (2) holds in the regions of r s, where the body is in contact with the
support and in this case the law relating UN with SN is expressed by means of the equation

(3)

where k(uN) is a nondecreasing function, which is zero for negative values of UN.
FIgUre 1(b) corresponds to the conditions:

If UN <0, then SN=O,

if UN ~0, then SN + kUN =0,

(4)

(5)

expressing the unilateral contact with an elastic support, and Fig. l(c} to the conditions:

If UN < 0, then SN =0,

if UN =0, then SN sO,

(6)

(7)

expressing the unilateral contact with a rigid support. To formulate a complete boundary value
problem, conditions (1) and (2) should be combined with the boundary condition

Sr, =Cr, i =I, 2, 3 (8)

on r s, where C1'l is a prescribed function on r s·
Further, under the assumption of small displacements, the equations of equilibrium and the

strain displacement relations are respectively

O'liJ+ II =0

Eli =HUIJ +"i.I),

(9)

(10)

where Elj is the strain tensor. f; is the vector of the body forces and the subscript after thecomma
denotes differentiation. The constitutive relations are written in the form

on
where E == {fit, ~:u, En, EI2, En, En}, W denotes the strain energy density of the body and" is the
symbol of subdiferentiation[1-10]. w is assumed to be a convex, lower semicontinuoust strictly
positive definite function defined on the space E of the symmetric strain.tensors.

tAreal vllluecl function f defined over an arbitrary set C of Rft is said to be lower semicontinUQUs at a point x of C, if

f(x):!i lim {(XI)
1-

for every sequence {x,} in C. such that XI .... X and the limit of {f(xl )} existS in (-oo+<»j.
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Function W has values in the interval (-00+00J[5]. Relation (12) expresses that 0'11 is a
subgradient[J] of w at e, i.e. w(e) is finite (w(e) < 00) and the variational inequality

(12)

holds for every e in E. The set of all subgradients of w at Eis tlte subdifferential set bW(E) of w
at E, i.e.

(13)

If W(E) is finite and differentiable at E, the set bW(E) contains only one element, which is the
gradient of W(E) (case of classical elasticity). At the points of nondifferentiability of w, lTll

belongs to the contingent set of W at E[lJ, i.e. to the set of all possible limits

lim [w(e)- w(e)J/(el/ -EI/)'
I!I/ .....Il

This limit gives at the differentiable points the usual derivative. A very useful notion for the
derivations of the duality between potential and complementary energy is the notion of the
conjugate function W

C [10J. It is defined on the space I of the symmetric stress tensors lTII by
means of the relation

(14)

where IT ={O'tl, 0'22, 0'33, 0'12, 0'13, lTv} and 0' and e satisfy (1 I). Function W
C is the complementary

energy density of the structure(6J and has the same properties as w.n is obvious, that instead of
(11) relation

(15)

can be used.
We can define the strain energy (resp. the complementary energy) of the structure by means

of

(resp.)

{
f w(E)dO if W(E) is integrable

W(E)= Jo
00 otherwise.

{
'f wC(O')dO if WC(lT) is integrable

WC(O')= Jo
00 otherwise.

(16)

(17)

It is proved in [5J that (11) describes the behaviour of a large class of materials. We mention here
tbe case of holonomic elastoplasticity, the case of locking materials, all the polygonal
stress-strain laws etc.

3. THE VARIATIONAL INEQUALITY OF VIRTUAL WORK AND THE MINIMUM OF
POTENTIAL ENERGY

A field X· of di&placements and strains U" E'I is defined to be kinematically admissible jf it
satisfies the strain.-displacement relations (10), the kinematical boundary conditions on r u and
the kinematical conditions imposed by the boundary conditions on f s. For example in the case of
Fig. l(c) the boundary conditions on f s introduce the inequality utsO. The actual
displacements and strains at the position of equilibrium are denoted by UI, EI/ and thus the
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differences u1- U, E1i - Eli represent the kinematically admissible variations. Moreover u1 i

denotes the stress fields obtained from E'f by means of relation (11). From eqns (9) and (10), the
conditions UI ::: U, on f u, and the well known divergence theorem, the identity

f (Tij(e11 - Eii) dO::: f j;(u1- Ui) dO +f. [SN(U~- UN) +ST,(U't, - UT,)] dfIn In ~

+1 S,(u1- u,) df VU" E'I E X* (18)
l'F

is obtained. Further the positive and negative parts of u~, i.e.

are introduced. It can be proved trivialy that relations (1), (2) yield the inequality

SN(U'1:J- UN)+ k(UN)(U~- UN)~O V U, EX*.
+- ~ + +

(19)

(20)

Indeed for UN < 0, SN ::: 0 and thus inequality (20) is satisfied; if UN ~ 0, thert UN ::: UN and thus

(20) becomes u~~ u~, which is valid. Thus eqn (18) yields by means of the boundary conditions

on f F the variational inequality

{ (Tij(E'i - Eij)do+l [k(UN)(~-UN)- CT(U~, - uT,)ldfJo f's + + +

-f. F;(u'-u,)df- ( j.(u1- ui)d02:0 'Vu1EX*.
l'" In (21)

Conversely it can be proved using the methods indicated in (1), that inequality (20) yields the
equation of equilibrium and the boundary conditions on f F and on r s. Indeed choosing the
special variations u1- U, ::: 0 on r and ±(u1-Ui) in the interior of n, (21) yields by means of the
divergence theorem the equation

(22)

which by means of the well known lemma of the calculus of variations, gives eqn (9). Strictly
speaking eqn (22) is a weak formulation of eqn (9). From eqn (9), identity (18) can be obtained;
relations (18) and (21) yield the variational inequality

f [SN(U~- UN)+ k(UN)(~-UN) + (ST, - CrJ(U~i - UT,)ldfJrs + + +

+ f (51 - F;)(u' - u;) df 2: 0 'Vu' E X*. (23)Jrp

From relation (23) with the help of the special variations U, - UI ::: () on r s and ±(u'-'uilgn r F

the boundary condition
(24)

results. Similarly by taking ult- UN::: () and ±(uf" - UT,) on r$, condition (8) is.obtained. Now the
remaining variational inequality

(25)
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will be examined. It will be proved, that inequality (25) yields the boundary conditions (1) and (2)
on f s. Indeed for UN < 0, k(UN) equals to zero and accordingly, inequality (25) gives for

+
:t(u~- UN) the condition SN =O. For UN ~ 0 substitute in (25)

and by dividing through p and for p -+ 00 the inequality

f.
[SNUN +k(UN )UN] df ~ 0, VUN ~ 0

rs + +

results. From (27) follows the pointwise inequality

Inequality (25) yields for U~ = O.

(26)

(27)

(28)

(29)

which with (27) ~ves the remaining boundary condition (2) on f s. Accordingly the variational
inequality (21) characterizes ~he position of equilibrium and expresses the principle of virtual
work for the unilater.al contact boundary value problem. It contains the nondiferentiable term,
expressing the virtual work of the reactions of the unilateral support This term includes the
positive functions UN, causing the variations to be unilateral and accordingly the principle of

+

virtual work has an inequality form [4]. To prove the theorem of the minimum of potential energy,
the function

KU) =rk(~)d~

is introduced. K(~) is convex, because of the monotonicity of k(~), and thus [1] the inequality

(30)

K(~)-K(UN)~(U~-UN)k(UN) Vu'EX*
+ + + + +

is valid. Moreover the inequality

arising from (ll), (12) and (16) is used further.
By means of relations (31) and (32), inequality (21) becomes

W(f*)+l K(U~)df-f. CT,u", df-.f. F,uTdf- ( f,uTdf
h + h ~ ~

~ W(f)+l K(UN)df-f. CT,UT, df-l F,Ui df
rs + rs rp

-Lf,u, df, Vu', fTJ E X*.

(31)

(32)

(33)

Accordingly any solution of the unilateral contact boundary value problem minimizes at the
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position of equilibrium the potential energy

over tbe set of admissible displacement and strain fields. Conversely the nonnegativity of the first
variation of (34) yields tbe variational inequality (21). For the formulation of the first variation of
the nondifferentiable convex functions K (UN), W(E), the concept of subdifferentiability must be

+

used. (The method is indicated in [l], p. 31).
Thus among aU the kinematically admissible fields, the exact solution is the one, that reduces

the potential energy of the structure to an absolute minimum.

4. THE VARIATIONAL INEQUALITY OF COMPLEMENTARY VIRTUAL
WORK. AND THE MINIMUM OF COMPLEMENTARY ENERGY

A field "'0 of stresses O"~ is defined to he statically admissible if it satisfies the condition of
equilibrium (9), tbe statical boundary conditions on r F and the statical conditions imposed by the
boundary conditions on r s. Thus the unilateral contact boundary conditions 0), (2) and (8) yield
on r s the conditions

(35)

Conditions (35) cause the field q,o to be a convex set and thus the variations must he compatible
with the c(mvexity of the field "'0. The strain field E~ is obtained from O'~ by means of (15). The
actual stress field at the position of equilibrium is denoted by O'r; and thus 0':-O'r; represents tbe
statically admissible variations.

The combination of eqns (9) and (to) with the boundary conditions on rF and on ru and the
Green's identity yields

(36)

Further, by means of relations analogous to (19), the positive and negative parts of SN are
introdUced. The nondecreasing function -1 is defined for nonpositive values of SN, by means of
the relation

UN -1(- SN) -= o. (37)

Function 1is the inverse of k. It can be trivially proved that relations (1), (2) yield tbe inequality

UN(~-SN)-I(-SN)(S~-SN)~O onrs VO"~E"'o.

Thus combining (36) with inequality (38) the variational inequality

(38)

(39)

is obtained. Conservely it can be proved, by following the same procedure with respect to the
stress variations, as it has been done in variational inequality (25) with respect to the
displacement variations, that relation (39) is equivalent to the strain-displacements relationship
(10) and to the boundary conditions on r u and on r 50 The variational tnequallty(39) expresses the
"principle" of complementary virtual work when the unilateral contact boundary conditions are
holding on r $. The variational inequality is constrained by conditions (35), which cause the
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variations to be unilateral· and make the "principle" of complementary virtual work to hold in the
inequality form [4].

For the proof of the minimum theorem of the complementary energy to convex function

(40)

satisfying the inequality[l].

(41)

is introduced. Moreover from (15) and (11) the inequality

(42)

arises. The combination of inequalities (41) and (42) with (39) yields the inequality

(43)

expressing the theorem of the minimum complementary energy

(44)

The minimum must be sought over the set 1/10 of admissible stress fields and thus the resulting
minimization problem is constrained by eqn (9) and by the inequalities (35). Conversely the
variational inequality (39) results from the nonnegativity of the first variations of the
complementary energy.

If conditions (6), (7) hold on f s, functions k(UN) and l(-SN) are zero. For this case as well
+ -

inequality (25) (resp. (38» yields by means of the subsidiary condition U~ S 0 (resp. S~ s 0) the
boundary condition (6) and (7).

5. UPPER AND LOWER BOUNDS

By means of relations (1), (2), (8HlO) and (14) and of Green's identity, the relation

II+IIc=f O'ijE/idO-{ hUldO-{ (SNuN+ST,uT,)df+ f Ru1df+( 0'/iR,u1df=0Jo Jo Jrs JrF Jru
(45)

is easily proved. Accordingly the inequality

II* ~ II = -Ilc ~ -II~ (46)

is valid, where II* (resp. II:> represents the potential energy (resp. complementary energy),
corresponding to a kinematically (resp. statically) admissible field. Thus II* and IIco provide
upper and lower bounds for the energy II =-Ilc of the structure at the position of equilibrium
and can be used in tbeapproximate analysis of the structure.

6. NUMERICAL EXAMPLE

The theorems of minimum potential and complementary energy make possible the numerical
calculation of the exact solution of the unilateral contact boundary value problem. The finite
element method is used to discretize the continuum and to establish the kinematically and
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statically admissible fields in terms of a finite number of unknowns. The potential energy (resp.
complementary energy) is expressed as a nonlinear function of the displacements and wiD be
minimized over the kinematically (resp. statically) admissible field. It contains the positive (resp.
negative) part of UN (resp. SN) and the generally nondifferentiable function W(E) (resp. WC(u», a
fact, which makes preferable the use of a derivative-free nonlinear programming algorithm. For
the solution of the subsequent examples the "flexible tolerence" algorithm of Paviani and
Himmelblau [3] has been used. This algorithm is one of the most general nonlinear pr()gramming
algorithms and gives the minimum of a nonlinear function subjected to nonlinear equality and
inequality constraints. The value of the objective function is improved by using "feasible" and
"near-feasible points" and thus the computation time is not spent by rigorous feasibility
requirements. A positive decreasing function whose form can be found in [3] acts as the tolerence
criterion for constraint violation through the entire search and also serves as a criterion for
termination of the search. The constraint violation is decreased as the search moves toward the
solution. For the unconstrained searches included in the "flexible tolerence" algorithm the
simplex method search of NeIder and Mead[8] is used.

In the minimization of the potential (resp. complementary) energy of the discretized
continuum the relations between UN, UT, and UI (resp. SN, ST, and SI) at the nodes of the finite
elements of the boundary r s, and the subsidiary conditions introduced by the set X* (resp. t{J~,

define the constraints of the problem. The number of variables is typically large but the numbers
of inequalities is small. The speed of convergence depends strongly upon the guessed starting
point of the algorithm. This initial solution is obtained, by assuming that the body does not work
itself loose from the boundary. This problem is not unilateral and accordingly the solution of a
system of equations yields the displacements of stresses which will be used to start the flexible
tolerance algorithm. Both following problems are programmed on a UNIVAC 1106 computer.
The "flexible tolerance" subroutine given in [3] has been used.

As an example the frame shown in Fig. 2(a) is analyzed. Its modulus of elasticity E is equal to

lbl

(II 12}:lo"'·M {31:uI"'·M

1-11 -5,10-3,2f' -1,20 -2,10

11-18 4.50-0,20 4,00 00

~8-19 8.00 9,50 7,60 9.50

11-;18 -7,50-1,00 -7.10 -6,50

10-11 -3,5O-ZPO -4,50-1,'0

3,om

11

1314

l-- 8.0m

DATA lal

Horizontal Beams : 40145 [cnlj

Columns : 40/45 [em)

Foundation Beams : I =0,01 m"',F = 2 m2

3.0m ~tO ~ [Nm)....,is- ..aI- .:o'2=t--I N'\I__ ====q-N [N]
I· 0 [N]

Ill: Beam Elements
121: ClaSSIcal Method
131: Umlateral Method

leI ld I

Fig. 2. Aunilateral contact problem for a frame.
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2.05 X 1010 N/m2 if es 5%c and to 1.80 x lQIo N/m2 otherwise. It is assumed that the foundation
beam 1-10 of the frame is in unilateral contact with an elastoplastic halfspace, whose properties
are concentrated in the k(U101) function given in Fig. 2(b). The shear stresses ST on the foundation
beam are assumed to be uniformly distributed and equilibrated by the lateral loads of the frame.
As a result, the displacement distribution d I and the length r of the region, where the foundation
beam works itself loose from the halfspace is obtained and is given in Fig. 2(c). The influence of
the unilateral contact theory on the bending moments is depicted in Fig. 2(d), where they are
compared with the bending moments obtained by the initial guess of the flexible tolerance
algorithm. This guess corresponds to the classical method for calculation of foundation
structures. The assumption that ST is uniformly distributed over the whole length of 1-10 does
not influence considerably the results of this example.

This can be checked by an iterative corrective procedure. A new uniform distribution of Sr,
only over the contact region is assumed, the structure is solved again, and so on until the
difference S1011+1 - SNI is made sufficiently small. The corrected displacement-distribution d2 is
given in Fig. 2(c).
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